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We use molecular dynamics to study the nucleation of cracks in a two-dimensional material without pre-
existing cracks. We study models with zero and nonzero shear moduli. In both situations, the time required for
crack formation obeys an Arrhenius law, from which the energy barrier and prefactor are extracted for different
system sizes. For large systems, the characteristic time of rupture is found to decrease with system size, in
agreement with classical Weibull theory. In the case of zero shear modulus, the energy opposing rupture is
identified with the breakage of a single atomic bond. In the case of nonzero shear modulus, thermally activated
fracture can only be studied within a reasonable time at very high strains. In this case, the energy barrier is
much higher compared to the zero shear modulus case. This barrier is understood within adiabatic simulations.
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I. INTRODUCTION

While our current understanding of fracture begins with
the ideas of Griffith in 1921 �1�, the study of its atomic
mechanism has attracted considerable attention in recent
years. For example, corrections to Griffith’s results for a
crack in a brittle material have been proposed and verified
with atomistic simulations �2–4�. Also, large scale simula-
tions have been used to study dynamical fracture �5–7�. This
increase in interest in fracture is partly due to computer
simulations, which promise an understanding of the phenom-
enon at the atomic level. However, simulations face a funda-
mental problem �8,9�: many atomic deformations are ther-
mally activated and therefore involve long time scales, which
are difficult to simulate.

Most simulations overcome this problem by studying
fracture with a pre-existing crack. In that case, the crack
growth is a driven phenomenon and there is no energy bar-
rier to be overcome. Only a few simulations have been used
to study the formation of cracks at nonzero temperature with-
out pre-existing cracks: void formation has been observed in
three-dimensional simulations of strained binary Lennard-
Jones systems �10�, and simulations for the rate of crack
nucleation have been performed in a two-dimensional �2D�
spring network �11�. Experimentally, the rate of crack nucle-
ation in heterogeneous materials has been found to obey an
Arrhenius law with an energy barrier scaling according to
Griffith’s results �12,13�.

In the present work, we address the nucleation of cracks
in a brittle two-dimensional material, i.e., a sheet with a
thickness of one atomic layer, through Langevin dynamics.
The rate constant for the nucleation of cracks follows an
Arrhenius law, from which the energy barrier is extracted.
Two variants of a square lattice are studied: atomic interac-
tions restricted to first neighbors and interactions extended to
second neighbors. In the former case, the shear modulus of
the solid is zero and the energy barrier is shown to be inde-

pendent of system size: the breakage of a single bond propa-
gates to the rest of the solid without any cost. In the latter
case, the shear modulus is nonzero and a finite-size crack has
to nucleate before rupture can propagate throughout the sys-
tem. These two situations will be referred to as chainlike and
solidlike models, respectively.

This paper is organized as follows. The next section be-
gins with a description of the models used in this paper fol-
lowed by a description of how simulations are carried out. In
Sec. IV we present the results for the chainlike and solidlike
models. The latter is physically more relevant to describe
brittle materials, and we discuss its energy barrier in the
context of Griffith’s theory in Sec. V.

II. MODEL

A stretched one-dimensional chain has been previously
used as a simple model for the breakage of polymers
�14–20�. Here we extend this model to study fracture in 2D
brittle solids by bonding the chains to each other so as to
form a square lattice �see Fig. 1�. We study samples contain-
ing M chains, which are made of N=100 atoms each. Those
chains are stretched in the horizontal direction, with their
total length fixed at N�a+s�, where a is the equilibrium bond
length and s is the applied strain. By constraining the atoms
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FIG. 1. �Color online� Schematic representation of a system
containing M �N=5�8 atoms. Atoms are only allowed to move in
the horizontal direction. First-neighbor interactions are represented
by solid lines, while dotted lines represent second-neighbor interac-
tions. Periodic boundary conditions are represented by dashed lines.
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to move only along the direction of the applied strain, we
prevent the system from forming topological defects, and so
the only mechanism for stress relaxation is fracture. Also, by
choosing the constraint to allow motion only along the ap-
plied strain, we expect to be sampling the pathway for frac-
ture while speeding up the simulation. We show that this
constraint does not change the energy barrier in Sec. IV,
where we perform one set of simulations without this con-
straint.

A square lattice can be made elastically isotropic by
choosing the spring constant between first neighbors to be
twice as large as the spring constant between second neigh-
bors �21�. To fulfill this condition, we chose the following
form for the Lennard-Jones potential between first neighbors:

Vf�r� = ���a/r�12 − 2�a/r�6� , �1�

and

Vs�r� = 4�s��as/r�12 − �as/r�6� , �2�

for second neighbors. We use �=1 and �s=36� /228 for the
binding energies and ro=a=1 and rso=21/6as=�2a for the
equilibrium lengths. For this choice of parameters, the spring
constant of the interaction between first neighbors
kf =72� /a2 is twice as large as the spring constant between
second neighbors ks=456�s /as

2.
The dynamics of this system is obtained by solving a set

of Langevin equations for the horizontal position xi,j of each
atom �i and j indicate the column and row of the atom in the
lattice�,

m
d2xi,j

dt2 = �
k,l

F�xi,j − xk,l� − �
dxi,j

dt
+ f i,j�t� , �3�

where F�x� is the force computed from the potential, m is the
atomic mass, and � is the friction coefficient. The random
force f i,j�t� is related to � by the fluctuation-dissipation theo-
rem.

Periodic boundary conditions in the horizontal direction
imply x0,j =xN,j and xN+1,j =x1,j for all j. Periodicity is also
imposed in the vertical direction to ensure that all chains are
equivalent: xi,0=xi,M and xi,M+1=xi,1. For simplicity, we use
reduced units. Energy is given in units of �, distance is given
in terms of a, and time is given in units of the smallest
phonon oscillation period P=2� / �12�2� /ma2� of an intact
chain �14�. Mass is written in terms of m and the friction
coefficient is tuned to �=0.25�2� / P�. The temperature T of
the system is given in units of � /kb, where the Boltzmann’s
kb is set to one.

Initially, all the horizontal bonds have the same length
a+s and all vertical bonds are at their equilibrium length a.
The velocity of each atom is chosen randomly according the
Boltzmann distribution. The dynamics of the system is ob-
tained by solving numerically Eq. �3� using the velocity-
Verlet algorithm �22� until the solid ruptures.

III. SIMULATION

In Fig. 2 �upper panel�, we show the time dependence of
the potential energy for the solidlike model. At early times,

the potential energy fluctuates, as the system explores a
metastable energy well. Rupture occurs at about 2750 units
of time when the energy of the system drops abruptly. This
shows that the system is been driven toward an equilibrium
state with a lower energy. In panels A, B, C, and D of this
figure, we show atomic configurations at different times dur-
ing the fracture process. In those panels, the growing crack is
seen to propagate in the direction perpendicular to the direc-
tion of applied strain. This indicates that we can use the sum
of bond lengths along the surface at which fracture is taking
place as an order parameter � for fracture. For convenience,
the sum is taken over all the largest bonds percolating verti-
cally along the sample and only the horizontal bonds are
considered in the sum. Thus, initially �=M�a+s� and � in-
creases until two surfaces are formed �31�.

Notice that the potential energy in the upper panel of Fig.
2 shows no apparent precursor behavior for rupture. Also, the
energy barrier that the system has to overcome for rupture to
proceed is smaller than the fluctuations in the total potential
energy. Thus, it cannot easily be extracted from an analysis
of the potential energy. To obtain this barrier, we study the
kinetics of the system as it proceeds toward rupture. In par-
ticular, we measure the characteristic time of rupture and
analyze this quantity from the point of view of the theory of
thermally activated systems.

To compute the characteristic time of rupture �, we use an
ensemble containing S0=1000 samples for the chainlike
model and S0=500 samples for the solidlike model. Those
samples differ from each other by the initial velocities and
random forces f i,j�t�. We will need to choose a value of the
order parameter �, which we will associate with irreversible
rupture. To do this, the characteristic time for the incipient
crack to reach a particular size is computed by tracking the
number of samples S�� , t�, whose order parameter has not
yet reached the value � at time t. For a fixed value of �, this
number decreases exponentially with time
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FIG. 2. �Upper panel� Dependence of the potential energy for
the solidlike model defined by M �N=60�100, s=0.065, and
T=0.016. Arrows indicate the instances at which the atomic con-
figurations in panels A–D are shown.
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S��,t� = S0 exp�− t/����� . �4�

The characteristic time ���� depends on � and is obtained
from a fit of S�� , t� to the numerical data.

The time at which irreversible rupture occurs depends on
the arbitrary choice of the cutoff value �c, which we associ-
ate with rupture. To chose this cutoff, we consider the depen-
dence of � on � shown in Fig. 3. Two distinct regimes are
apparent. The first regime occurs when � is smaller than
approximately 65.8 �in units of a�. In this regime, � in-
creases slowly with time. The underlying physics of this re-
gime is the competition between thermal fluctuations, which
are responsible for increasing crack length, and the restoring
force on the atomic bonds. The second regime occurs when
the order parameter � is greater than 65.8. Here, ���� has
reached a plateau, and � increases very rapidly with time.
Stress relief in the bulk material is the driving force in this
regime which therefore produces a fast increase in �: irre-
versible rupture has occurred. So, from Fig. 3, we can deter-
mine the value of � for which rupture becomes irreversible.
This value is �c=65.8.

IV. RESULTS

In our simulations, the nucleation of cracks is thermally
activated �8,9,11� such that their occurrence is typical of an
Arrhenius process. The characteristic time of rupture �, the
inverse of the nucleation rate, is

� = �0 exp�Eb/kbT� , �5�

where kbT is thermal energy, Eb is the energy barrier the
system has to overcome, and �0 is the inverse of the attempt
frequency. The attempt frequency depends on the vibration
frequency of the system in the initial metastable well given
by the local curvature of the energy surface �24,25�. It also
depends on the friction coefficient in the Langevin equation
�23�. In this section, we study the dependence of � on the
temperature for the chainlike and solidlike models to extract

both Eb and �0, which are intrinsic quantities of the system
being studied �26�.

A. Chainlike model

In Fig. 4, we show the temperature dependence of � for
different system sizes M. The strain is set to s=0.05. For
each system size, � increases exponentially with 1 /kbT, in
agreement with Eq. �5�. The energy barrier Eb and the pref-
actor �0 are extracted from fits to those results. Changing
system size strongly affects the prefactor but has no effect,
within error bars, on the energy barrier, as can be seen in
Figs. 4�b� and 4�c�, respectively.

The dependence of the prefactor on system size can be
understood qualitatively within the scope of a nucleation
theory for fracture, the classical Weilbull theory. It assumes
that the probability S�t� /So of a sample of size M to survive
without fracture at time t scales with the probability P�t� that
a single chain will not fracture at time t to the power M. Note
that S�t��S��c , t� was defined in Eq. �4�. Equating the prob-
ability of nonfracture to S /S0 yields �e−te−�Eb�1/�0 = PM. Figure
4�b� shows the good agreement of the simulation with this
inverse relation �0=1 /M.

The energy barrier can be understood quantitatively by
assuming that parallel chains are independent from each
other. Under this assumption, the energetic cost E of elon-
gating one atomic bond in a single chain is given by
�14,15,17�

E��� = V�a + s + �� + �N − 1�V�a + s −
�

�N − 1�	 , �6�

where � is the deviation of the broken bond length from its
strained elongation and V�x� is the potential energy of an
atomic bond. Equation �6� corresponds to the sum of poten-
tial energies of all the bonds in the chain containing the
incipient fracture. This equation takes account of the fact that
while one of the bonds increases toward rupture by an
amount �, the other bonds of the same chain relax by an
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FIG. 3. Dependence of the characteristic time on the cut-off
value of the order parameter for the solidlike model defined by
M �N=60�100, s=0.065, and T=0.016. The dashed line sepa-
rates reversible �left side� from irreversible �right side� rupture.
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FIG. 4. �Color online� Chainlike model. �a� Dependence of ln���
on the inverse of temperature for different system sizes M. �b�
Dependence of �0 on system size. �c� Dependence of the energy
barrier Eb on system size.
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amount � / �N−1� toward their equilibrium value. For the pa-
rameters used in Fig. 4, i.e., N=100 and s=0.05, Eq. �6�
predicts an energy barrier of 0.0564. This is in good agree-
ment with our simulations, where the barrier is approxi-
mately 0.054 for all system sizes.

Independence of parallel chains is the key assumption to
explain fracture in the chainlike model. This assumption can
be understood as follows. Since the shear modulus of this
model is zero, no energetic cost is associated with sheared
configurations in the linear regime. Therefore, an individual
chain can proceed toward fracture independently of neigh-
boring chains until nonlinear effects become relevant. The
energy barrier opposing this process is given by the compe-
tition between the energy costs of increasing the length of
one of the bonds of the chain—independently of other
chains—and the energy relaxation resulting from the bulk
elastic forces.

Equation �6� results from the competition between the en-
ergetic cost of extending one bond length of the chain and
the energetic gain of relaxing the remaining bonds. This con-
trasts with Griffith’s calculation, where the barrier is related
to the cost of creating more surface and the energetic gain
due to reducing the strain in the bulk of the material. Thus,
despite its use in the literature, the square lattice with only
first-neighbor interactions is a poor model for fracture in a
solid and Griffith’s theory does not apply to this system.

B. Solidlike model

We now study the solidlike model. In Fig. 5, we show the
temperature dependence of � for different system sizes M
and applied strain s=0.065. As in the previous model, we
study this system by fitting the time of fracture to Eq. �5�,
obtaining the energy barrier Eb and the prefactor �0 for each
system size. Those results are shown in Figs. 5�b� and 5�c�.

The prefactor �Fig. 5�b�� presents two regimes: for sys-
tems containing less than 15 chains, i.e., M 	15, �0 increases
with system size; however for M 
15, the prefactor de-

creases as system size increases. Those behaviors are related
to finite-size effects. When M 	15, the relaxation region
around the crack is of the same size as the system. On the
other hand, increasing the size of the solid above 15 layers
implies that more nucleation sites are available for rupture,
and �0 decreases with M, as in the previous model �27,28�.

In Fig. 5�c�, we show the energetic cost for nucleating a
crack in the solidlike model as a function of system size M.
For solids smaller than M =15, the energy barrier increases
considerably with system size �more than 150% in Fig. 5�c��,
while for solids larger than M =15, the increase is only mar-
ginal and shows a saturation trend at Eb
0.14—indicating
that finite-size effects become negligible. This value is com-
parable to the adiabatic barrier, which is computed by ex-
tending the length of one bond in small steps and then fixing
its length while the other bonds are relaxed at zero tempera-
ture. In this process, the energy increases until the critical
crack is formed. The maximum energy seen in this process
corresponds to the energy required to nucleate the crack at
zero temperature. The adiabatic energy for the different sys-
tem sizes are represented by squares in Fig. 5. Notice that the
barrier obtained in our simulations is smaller than the adia-
batic energy barrier by about 23%. A smaller simulated bar-
rier compared to the adiabatic case has also been observed
for one-dimensional systems �16�. A possible explanation for
this discrepancy might be that a zero-temperature calculation
does not account for entropy, which plays a role in the free
energy, opposing rupture in system with multiple degrees of
freedom �29,30�.

One important simplification imposed in our model with
respect to two-dimensional solids is the constraint of atomic
dynamics to one dimension. However, by imposing this con-
straint along the direction of applied stress, we expect to be
sampling the pathway for rupture of a 2D solid. To verify
this statement, we performed a set of simulations on a
M �N=50�100 system, where the constraint on the motion
of atoms was removed. The results of those simulations are
shown in Figs. 5�b� and 5�c� and are referred to as full 2D.
Notice that the full 2D system has a much lower prefactor
than our constrained system. A discrepancy in the prefactor
is expected since it is related to the vibration of the system
and therefore its dynamics, which differ in the two models.
To explain why the prefactor of the full 2D system is smaller
than the prefactor of the constrained system, one would have
to apply a multidimensional Kramers’s calculation to our
problem. This calculation was performed successfully to
study rupture in a one-dimensional chain �14�, but its appli-
cation to the present model is beyond the scope of this paper.
Despite the discrepancy in the prefactor, the energy barrier in
our constrained model and the full 2D are equal within error
bars. We are therefore confident that our constrained model
can be used to study the energetic behavior of 2D solids. In
the next section, we discuss the simulated energy barrier in
the context of Griffith theory for rupture and adiabatic simu-
lations.

V. SOLIDLIKE MODEL AND GRIFFITH

The introduction of a crack of size L in a solid character-
ized by a Young’s modulus E and subjected to a stress � will
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result in a stress-energy relief of ��2L2 /2E. But this crack
will also involve a cost of 2�L, where � is the surface en-
ergy, such that the dependence of the energy on the crack
size L is �13�

EG�L� = −
�L2�2

2E
+ 2�L . �7�

This potential energy reaches a maximum when
�EG�L� /�L=0. This occurs at the critical value
LG=2E� / ���2�. Beyond this crack length, the crack propa-
gates spontaneously to reduce the bulk strain in the material
until the solid is broken into two pieces. The barrier for crack
nucleation occurs at this critical length EG�LG�= 2�2E

��2 = 2�2

�s2E
.

The Young modulus of the solidlike model is E=77.91 �in
units of � f /a3� and the energy necessary to create two sur-
faces 2� is equal to the energy of two weak and one strong
bond per interatomic distance �=0.6587. For a strain s
=0.065, the Griffith energy barrier is EG=0.837, that is, ap-
proximately six times the value obtained from our statistical
simulation.

It is of no surprise that Griffith’s calculation is not valid
for large strains. First, in this highly stretched regime, linear
elasticity theory is not valid. Second, for strains larger than
0.04, only one chain needs to be completely broken in order
to initiate the rupture process. In other words, while in Grif-
fith’s regime the mechanism behind rupture is the competi-
tion between the formation of new surface and stress relax-
ation, the physics of rupture in the highly stressed regime is
the competition between stress relaxation and bond stretch-
ing at the formation of the incipient crack.

To understand the range of validity of Griffith calculation,
we performed adiabatic relaxation �T=0� simulations in
which bonds were mathematically cut along a line perpen-
dicular to the applied strain. After cutting those bonds, atoms
were relaxed until the force on each of them was smaller
than 1�10−5. To avoid finite-size effects, we increased the
size of the system from N=100 at S=0.04 to N=600 at
S=0.01. The relative energy barrier computed from this pro-
cess with respect to the Griffith barrier is shown in Fig. 6.
This figure shows that for strains below 0.04, the adiabatic
barrier differs by at most 30% from the Griffith barrier. On
the other hand, for strains beyond 0.04 those barriers are
several times different and this difference increases with
strain. In the inset of Fig. 6, we also show in a log-log scale
the dependence of the energy barrier on strain. For strains
below 0.04, those quantities scale with an exponent of −2.26.
This is very close to the exponent predicted by Griffith’s
theory: −2. The behavior at higher strains deviates from this
scaling. This clearly shows that for our model, Griffith’s

theory is valid for strains smaller than 0.04. We note that the
calculation of the energy barrier with strain-dependent Young
modulus and surface tension—as described in Ref.
�3�—gives results in greater disagreement than the ones of
Griffith.

VI. CONCLUSION

Due to its simple dynamics and large system size, our
atomistic simulation of the nucleation of cracks in thin brittle
sheets is an ideal system for the study of noise-activated
processes and nucleation theory. In particular, we found that
the energy barrier for crack nucleation in a square lattice
with only first-neighbor interactions is comparable to the bar-
rier for the failure of a one-dimensional chain due to the zero
shear modulus of this system. For the more interesting case,
where second-neighbor interactions are incorporated into the
model, we found agreement between the simulated energy
barrier at high strains and the one computed from an adia-
batic relaxation. This barrier is much higher compared to the
case of isolated chains. We believe that extensions of the
present study such as to investigate the growth of pre-
existing cracks would be a valuable contribution to the un-
derstanding of fracture.
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